

Balance hidroelectrolítico

Diego Nahuelanca Interno USS

Febrero 2023

Hoja de ruta 🗳

- ☐ Introducción
- ☐ Fisiología
- ☐ Evaluación del estado hidroelectrolítico
- ☐ Manejo hidroelectrolítico
- ☐ Ejercicio
- Referencias

Introducción

- ☐ El balance hidroelectrolítico corresponde al equilibrio de fluidos en los compartimentos corporales, que se mantiene por la ingesta y la excreción de agua y electrolitos.
- Un RN es más susceptible a trastornos de la homeostasis de agua y electrolitos por mala función renal, aumento de las pérdidas insensibles e incapacidad para acceder a agua.

- ☐ El volumen y distribución del agua total entre RNT y RNPT son distintas:
 - ☐ RNT ACT: 75% del peso corporal, 45% VEC.
 - ☐ RNPT ACT: 80-90% del peso corporal, 70% VEC.
- ☐ Debido a esto se espera una pérdida de peso mayor en los RNPT (10-15%) que en los RNT (7-10%)

Pérdidas de agua y electrolitos !

- Pérdidas insensibles de agua (30-60 ml/kg/día- 100 ml/kg/día, menores de 1000 g)
- Pérdidas urinarias de agua (30-100 ml/kg/día)
- Pérdidas electrolíticas (Na 3-4 mEq/kg/día) (K 2-3 mEq/k/día)

La terapia de mantención consiste en:

H2O: 60-160 ml/kg/dia

Sodio: 3-4 mEq/kg/día

Potasio: 2-3 m Eq/kg/día

Peso de Nacimiento (grs)	Perdidas insensibles Promedio (ml/k/día).	Pérdidas insensibles Promedio (ml/k/hora).	
750-1000	64	2,6	
1001-1250	56	2,3	
1251-1500	38	1,6	
1501-1750	23	0,95	
1750-2000	20	0,83	
2001-3250	20	0,83	

	Factores que afectan las PI de agua en RN
Madurez	Inversamente proporcional al peso y EG
T° ambiental (por sobre ATN)	Aumenta en proporción a incremento de T°
T° corporal	Aumenta hasta en 300% a T° rectal > 37.2°C.
Humedad ambiental o inspirada elevada	Reduce en 30% si iguala P° de vapor de piel o tracto respiratorio
Lesiones dérmicas	Aumenta según extensión de la lesión
Defectos congénitos de piel(ej.Onfalocele)	Aumenta según extensión de la lesión
Calefactor radiante	Aumenta alrededor de 50% en relación a incubadora
Fototerapia	Aumenta hasta 50% y 100% en prematuro .extremo
Cubierta plástica	Reduce entre 10 y 30%

Evaluación del estado hidroelectrolítico

☐ Es importante evaluar si la terapia está cumpliendo los requerimientos del paciente, tenemos dos posibles casos:

- l. Exceso de agua corporal: No habrá pérdida fisiológica de peso, incluso puede aumentar de peso y haber una hiponatremia por dilución. También el exceso de volumen se puede observar por edema generalizado y/o hipertensión.
- 2. Pérdida excesiva de agua corporal: Se dará por administrar un volumen menor del requerido por el paciente, en este caso habrá una pérdida de peso mayor a la esperada, hipernatremia, taquicardia y llene capilar enlentecido. En este caso se puede llegar a shock hipovolémico con requerimiento de bolo de SF 10 20 cc/kg.

Manejo Hidroelectrolítico

☐ Para calcular los aportes diarios se recomienda usar el **peso de nacimiento** durante los primeros 7 días de vida.

Aporte de líquidos

Volumen total correspondiente

Carga de glucosa

Carga necesaria para inicio de fleboclisis: 4-6 mg/ kg/ min Suero Glucosado 10% usado en neonatología

Electrolitos

Inicialmente flebo sin electrolitos, se agregan cuando Na es < 135 y el potasio es < 3.5.

Ejercicio

RNT AEG 39 semanas que pesó al nacer 3.500 grs. Nace con depresión respiratoria y requiere reanimación con ventilación a presión positiva y masaje cardíaco. Se intuba y queda en ventilación mecánica por incapacidad de iniciar ventilación en forma espontánea.

1. ¿Qué indicación le dejamos al paciente?

1. Volumen total (VT)

DIA 1

- 1. Determinar el volumen total que se debe aportar al RN.
 - \Box 60 ml x 3.5 kg = 210 ml/ dia
 - ☐ Velocidad de entrega por hora.
 - \Box 210 m1/24 hrs = **8,8 ml/hr**

Se utilizará suero glucosado 10% 210 cc/dia

Volúmenes	RNT	RN Pt
Día 1	60 ml /kg	60 - 80 ml/kg
Día 2	80 ml /kg	80 - 100 ml/kg
Día 3	100 ml /kg	100 -120 ml/kg
Día 4	110 - 120 ml /kg	110 - 130 ml/kg
Día 5	120 - 140 ml /kg	120 - 150 ml/kg
Día 6	130 - 150 ml /kg	130 - 160 ml/kg
Día 7	140 - 160 ml /kg	140 - 170 ml/kg
Día 8 y más	150 - 180 ml /kg	150 - 200 ml/kg

Carga necesaria de 4-6 mg/ kg/ min, cada día aumentando 1-2 mg/ kg/ min según tolerancia

- VN glicemia = 60 150 mg/dl
- 8.8 ml/ hora x 24 horas
- \bullet 8.8 x 24 = 211.2 ml/ día
- SG 10% = 10 grs de glucosa / 100 ml de solución

```
100ml → 10 gramos de glucosa
211.2ml → X = 21.12 gramos = 21120 mg
```

21120 mg/3.5 kg/1440 min = 4.19 mg/kg/min

Una hora después...

- ☐ RN hipotenso, se dificulta tomar PA por manguito
- Instalar vía arterial para medir presión invasiva continua
- □ La vía requiere de 1 ml/hora SF + 1 UI de heparina, por lo que al goteo final (8,8 cc/h) debemos restarle ese 1 cc/h del suero fisiológico + más heparina, quedando en 7.8 cc/h (187.2 ml/dia)
- ☐ Esto hace que nuestro volumen a aportar sea menor = insuficiente carga de glucosa

 $\begin{array}{c} 100 \text{ mI} \rightarrow 10 \text{ gr} \\ 187.2 \ \rightarrow 18.7 \text{ gr} \end{array}$

18700 mg/ 3.5 kg/1440 min = **3,71 mg/kg/min**

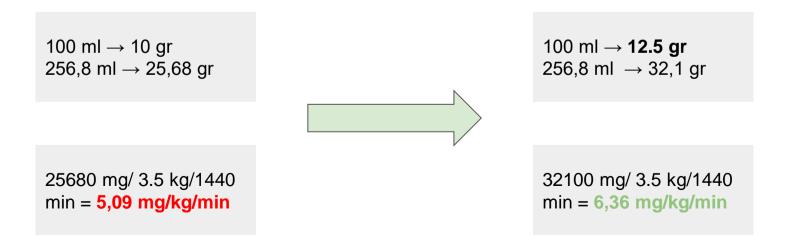
¿Qué hacemos? ¿Aumentar volumen diario o aumentar la concentración de glucosa?

Aumentamos la concentración...

Usamos un suero glucosado al 12.5%

- □ Suero fisiológico 24 ml + 1 Ul heparina/ml a 1 ml/hora por vía arterial
- ☐ Suero glucosado al 12.5% 187.2 ml a 7.8 ml/hora
 - □ Volumen total de 60 ml/kg/día
 - ☐ Carga de glucosa de 4.64 mg/kg/min

 $100 \text{ ml} \rightarrow 12.5 \text{ gr}$ $187.2 \rightarrow 23.4 \text{ gr}$


23400 mg/ 3.5 kg/1440 min = 4,64 mg/kg/min

Al día siguiente...

- □ 3395 gramos (seguiremos usando como referencia el peso de nacimiento hasta que lo recupere)
- □ Diuresis de 3 ml/kg/hora
- ☐ Ventila por sí mismo
- \square Na = 131 mEq/L; K = 3.2 mEq/L
- ☐ Inicialmente se indican flebos sin electrolitos
 - ☐ Iniciar electrolitos con Na <135 mEq/L y K < 3.5 mEq/L

Indicaciones 2° Dia

- □ Aumentar volumen a 80 ml/kg
- \square 80 x 3.5 = **280 ml/día** = 11.666 ml/hora = **11.7 ml/hora**
- □ 1 ml/hora se va en la vía, por lo que nos quedan 10.7 ml/hora (256,8 ml/dia)
- ☐ Además, debemos subir 1-2 mg/kg/min la carga de glucosa
 - \Box (4.6 \rightarrow 5.6-6.6 mg/kg/min)

3. Electrolitos

- □ 3 mEq/kg/día de Na
 - \Box 3 x 3.5 = 10.5 mEq/día Na
- □ 2 mEq/kg/día de K
 - \square 2 x 3.5 = 7 mEq/día K

	RNT	RN Pt	
Na	2 - 4 mEq/kg/día	2-4 en primeros días y 6 - 8 en período de crecimiento	
ĸ	2 - 3 mEq /kg/día	2-3 en primeros días y 3 - 4 en período de crecimiento	

1 cc NaCl 10% = 1.7 meg/ml

1 cc KCl 10% = 1.34 meq/ml

1 ml \rightarrow 1.7 meq X ml \rightarrow 10.5 meg

6.17 ml

1 ml \rightarrow 1.34 meq X ml \rightarrow 7 meq

5.22 ml

Indicaciones 2° dia:

- ☐ Suero fisiológico 24 ml + 1 UI heparina/ml a 1 ml/hora por línea arterial
- □ Suero glucosado al 12.5% 260 ml + NaCl 10% 6 ml + KCl 10% 5 ml a 10.7 ml/hora
 - Volumen total de 80 ml/kg/día
 - ☐ Carga de glucosa de 6.4 mg/kg/min
 - □ Aporte de Na de 3 mEq/kg/día
 - □ Aporte de K de 2 mEq/kg/día

Tonicidad

Por último... Debemos saber la tonicidad de la solución, la cual se calcula en base al Na.

Solución madre en Neonatología → 100 cc S. Glucosado 10% + 3cc NaCl 10% + 1cc KCl 10%

NaCl 10%: en 1 ml \rightarrow 1.7 meg/ml de Na.

NaCl $3cc = 3 \times 1.7 \text{ meq} \rightarrow 5.1 \text{ meq}$ en 3 cc, multiplicamos x 10 para sacar tonicidad en 1 lt de solución = **51 meg/lt.**

Al comparar solución madre neonatológica con tonicidad plasmática concluimos que es **hipotónica**.

 $1 \text{ ml} \rightarrow 1.7 \text{ meq/ml}$ $3 \text{ ml} \rightarrow X = 5.1 \text{ meq } x \text{ } 10 = \textbf{51 meq/Lt}$

- http://www.saludinfantil.org/Seminarios_Neo/Seminarios/Nefrologia/Nefrologia_index.htm
- http://www.saludinfantil.org/Modulos_Neonatologia/HidroElectrolitico.pdf
- https://bibliotecaneonatal.cl/index.php
- http://www.neopuertomontt.com/guiasneo/Guias_San_Jose/GuiasSanJose_11.pdf