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KEY POINTS

� Establishing breathing and improving oxygenation after birth are vital for survival and long-
term health of preterm infants.

� Approximately 50% of extremely low birth weight (ELBW) infants are hypothermic after
admission to neonatal intensive care units (NICUs).

� Active measures to avoid hypothermia during stabilization in the delivery room (DR) should
include the use of plastic wrapping; warming equipment, such as radiant warmers;
warmed humidified resuscitation gases; and adequate temperature.

� Respiratory support at birth should aim to facilitate the early establishment of an effective
functional residual capacity (FRC), initiate spontaneous breathing, facilitate gas exchange,
and deliver an adequate tidal volume, without damaging the lung.

� Current neonatal resuscitation guidelines recommend the use of 21% to 30% oxygen dur-
ing neonatal resuscitation at birth.
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INTRODUCTION

Establishing breathing and improving oxygenation after birth are vital for survival and
long-term health of preterm infants. Very preterm infants often have difficulty in estab-
lishing effective breathing after birth because their lungs are structurally immature,
surfactant deficient, and not supported by a stiff chest wall,1 which render the lungs
of very preterm infants uniquely susceptible to injury.2,3 A majority of ELBW infants
receive respiratory support in the DR. The DR is a stressful environment where deci-
sions are made quickly and resuscitators need to be skilled in clinical assessment, de-
cision making, and mask ventilation.4 These tasks, however, are often more difficult
than is widely appreciated, and it is possible that these infants are not optimally sup-
ported because of difficulties in ventilation and perfusion during initial
resuscitation.1,5,6

CORD CLAMPING

For centuries a physiologic approach to clamping the cord was routinely used. In the
middle of the twentieth century, this physiologic approach to cord clamping was
changed to immediate cord clamping (ICC). One reason for this practice change
was the thought that keeping the cord intact could contaminate the obstetric sterile
field. The practice of ICC has recently been questioned as unphysiologic,7 which is
also reflected in the current neonatal resuscitation guidelines, which recommend
delayed cord clamping (DCC) for at least 30 seconds.4 Using DCC (defined by various
definitions of time delays [eg, >30 seconds or until pulsation is no longer detected])
allows transfusion of blood to the newborn from the placenta; it can provide an infant
with up to an additional 30%blood volume,8 whichmay improve pulmonary blood flow
and left ventricular preload.9 In spontaneously breathing ELBW infants, DCC has
short-term benefits on neonatal hemodynamic transition physiology.10–12 A recent
meta-analysis of preterm infants receiving DCC compared with ICC reported on 10
studies (199 infants).13 Compared with ICC, DCC improves short-term outcomes of
ELBW infants (mean difference 0.61; 95% CI, �2.52 to �1.92), including higher blood
pressure and hemoglobin on admission and less frequent blood transfusions.13

Although DCC has been shown to reduce overall intraventricular hemorrhage (IVH)
(mainly lower grades 1 and 2) by 50%,14,15 it has not been proved to reduce the inci-
dence of severe (grade 3 or 4) IVH or death.13 Furthermore, these short-term benefits
have failed to translate into improved neurodevelopment outcomes at later age.13,16

Umbilical cord milking (UCM) is an alternate to DCC, is a faster technique of promot-
ing placental transfusion, and takes approximately 5 seconds to 10 seconds.12 The 2
interventions when compared showed no any difference in mean hemoglobin concen-
tration at birth, number of blood transfusions in first 6 weeks of life,17 or long-term neu-
rodevelopmental follow-up.17 Katheria and colleagues12 showed UCM to be a more
efficient technique than DCC to improve blood volume in premature infants when
delivered by cesarean section. Alternative strategies include UCM12 and initiation of
resuscitation while the newborn remains attached to the cord.18,19 Additional evidence
is awaited, however, from ongoing clinical trials before this can be translated into clin-
ical practice.

Practical Aspects

Currently, the evidence is equivocal; there is minimal advantage to DCC, which has, at
minimum, hematologic benefits; it is suggested that ELBW infants not requiring imme-
diate resuscitation should receive DCC for at least 30 seconds.4 Infants could be either
held above or below the level of the placenta.20
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THERMOREGULATION

Maintenance of thermal homeostasis using a target range of 36.5�C to 37.5�C is one of
the most critical supportive therapies during fetal to neonatal transition, in particular
for preterm infants. Silverman and colleagues21 first cited the association between
survival and incubator temperature and hypothermia. On review of the data, only
the ELBW infants had higher mortality in the cold (incubator temperature of 28.7�C)
than the warm (31.7�C) groups. Both hypothermia and hyperthermia should be
avoided during stabilization to prevent common morbidities.22 Hypothermia remains
problematic even when recommended routine thermal care guidelines are followed
in the DR. ELBW infants are at a high risk of developing hypothermia due to an imbal-
ance between heat loss by conduction (cold surface), radiation (cool walls), evapora-
tion (thin epidermis with increased permeability), and convection (cool ambient room
temperatures) to heat production (reduced quantities of subcutaneous brown fat and
inadequate vasomotor responses).18 There is a dose-related effect on mortality with
an increased risk of approximately 30% for each degree below 36.5�C body temper-
ature at admission. Therefore, the current neonatal resuscitation guidelines emphasize
the importance of maintaining thermal homeostasis throughout neonatal stabilization.
Strategies to minimize heat loss include (1) occlusive wrapping, (2) exothermic warm-
ing mattress, (3) warmed humidified resuscitation gases, (4) polyethylene caps, and (5)
adequate DR temperature.4

A Cochrane review examined different barriers to prevent heat loss (eg, plastic wrap
or bag, plastic cap, and stockinet cap).23 Plastic wraps or bags were effective in
reducing heat losses in infants less than 28 weeks’ gestation (mean difference [95%
CI] 0.68�C [0.45�C –0.91�C]). Plastic caps were effective in reducing heat losses in in-
fants less than 29 weeks’ gestation (mean difference [95% CI] 0.80�C [0.41�C
–1.19�C]). The Cochrane review concluded that there was insufficient evidence to sug-
gest that either plastic wraps or plastic caps reduce the risk of death during hospital-
ization,23 and that stockinet caps were not effective in reducing heat loss.23

Using an external heat source (eg, skin-to-skin care [SSC] or a transwarmer
mattress) can effectively reduce the risk of hypothermia compared with conventional
incubator care for infants.23 Using SSC or a transwarmer mattress reduces the inci-
dence of hypothermia on admission to NICU in ELBW infants (relative risk [RR]:
SSC 95% CI, 0.09 [0.01–0.64]; transwarmer mattress 95% CI, 0.30 [0.11–0.83]).
Plastic wraps or bags, plastic caps, SSC, and transwarmer mattresses all keep pre-
term infants warmer, leading to higher temperatures on admission to neonatal units
and less hypothermia. Furthermore, there is emerging evidence to use heated humid-
ified gases for initial respiratory support during EBLW infant resuscitation, resulting in
more infants with normothermia compared with cold dry gas (mean [SD] rectal tem-
perature 35.9�C [0.6] vs 36.4�C [0.6] for cold and heated cohorts, respectively;
P 5 .0001).24

It is recommended that DR temperature should be maintained at 23�C to 26�C.4

Cold stress and incidence of hypothermia were reduced by increasing the DR temper-
ature to that recommended by World Health Organization.25 Duryea and colleagues26

found that an increase in operating room temperature from 20�C to 23�C at the time of
cesarean reduced the rate of neonatal and maternal hypothermia (without a measur-
able decrease in neonatal morbidity). Neonatal resuscitation guidelines (2015) recom-
mend prewarming the DR to 26�C for infants with weight less than 1500 g.4

On the contrary, infants born to hyperthermic mothers seem to have increased
neonatal mortality, seizures, and encephalopathy. Although there is an association be-
tween chorioamnionitis at the time of delivery with cerebral palsy, hyperthermia has
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many deleterious effects on the perinatal brain, including an increase in cellular meta-
bolic rate and cerebral blood flow alteration; release of excitotoxic products, such as
free radicals and glutamate; and hemostatic changes.27 Therefore, hyperthermia
(>38.0�C) should be avoided during stabilization of ELBW infants.4

The current evidence is limited by the small number of infants included in random-
ized trials. No long-term follow-up data are available to recommend any precise
method for clinical practice.23

Practical Aspects

Active measures should be initiated and performed to avoid hypothermia in ELBW in-
fants during stabilization in DR, including the use of plastic wrapping, warming equip-
ment such as radiant warmer, warmed humidified resuscitation gases, and adequate
DR temperature at 26�C. Especially for infants born to mothers with fever, however,
vigilance in thermoregulation should be exercised to avoid hyperthermia.

Respiratory support in the delivery room
Although a majority of infants make the fetal-to-neonatal transition without help,28

ELBW infants often need respiratory support at birth.28 These infants often have diffi-
culty establishing effective breathing after birth due to structurally immature
surfactant-deficient lungs and not supported by a stiff chest wall,1 which render the
lungs of very preterm infants uniquely susceptible to injury. During the transition of
spontaneously breathing ELBW infants, to facilitate the early establishment of an
effective FRC, reduced atelectotrauma, and improved oxygenation, continuous posi-
tive airway pressure (CPAP) has been advocated at the initiation of respiratory sup-
port.29–33 If an infant fails to initiate spontaneous breathing, current neonatal
resuscitation guidelines recommend positive pressure ventilation (PPV) via a face
mask4 to establish FRC, facilitate gas exchange, deliver an adequate tidal volume
(VT), and initiate spontaneous breathing, without damaging the lung.1 Further, using
a sustained inflation (SI) may help lung liquid clearance, recruitment of FRC,34 and
positive end-expiratory pressure by preventing repeated collapse and opening of
alveoli.34
CONTINUOUS POSITIVE AIRWAY PRESSURE

Observational studies in the era before the widespread use of antenatal steroids and
the introduction of surfactant and the postsurfactant era have documented an asso-
ciation between lower rates of BPD and increased use of nasal CPAP in the DR.31

Studies comparing centers predominantly using nasal CPAP in DR to centers using
early mechanical ventilation (MV) and surfactant administration reported lower BPD
rates in centers with a focus on nasal CPAP.35–37 Van Marter and colleagues37 re-
ported higher rates of BPD in centers with more MV (75% vs 29%) and increased sur-
factant use (45% vs 10%) compared with centers with predominantly use of early
nasal CPAP. These reports stimulated large randomized control trials comparing nasal
CPAP or early endotracheal intubation at birth. A pooled analysis of a total of 2782 pre-
term infants less than 29 weeks’ gestation (1296 infants in the nasal CPAP group and
1486 in the intubation group) showed a significant benefit for the combined outcome
of death or BPD, or both, at 36 weeks’ corrected gestation for babies treated with
nasal CPAP (RR [95% CI] 0.91 [0.84–0.99]; risk difference �0.04, �0.07 to 0.00; num-
ber needed to treat 25). This suggests that 1 additional infant could survive to 36weeks
without BPD for every 25 babies treated with nasal CPAP in the DR rather than being
intubated.31
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SUSTAINED INFLATION

Animal studies have reported that SI (1) improves lung compliance without adverse
circulatory effects,38 (2) achieves lung aeration more uniformly,39 (3) has an increased
inspiratory volume and greater FRC compared with PPV alone,34 and (4) does not
cause overdistension of the lungs.40

Observational studies using SI during stabilization in the DR have reported a signif-
icant reduction in rates of intubation and MV, BPD, and use of oxygen,41 which led to
the design of several randomized controlled trials to compare SI with PPV alone. te
Pas and colleagues42 compared 2 different DR approaches —SI delivered via a
T-piece and followed by early nasal CPAP compared with PPV with a self-inflating
bag. They reported a significant reduction in intubation in the DR and BPD with SI
and early nasal CPAP compared with traditional ventilator support in the DR. The
studies comparing SI with nasal CPAP to CPAP alone did not find any difference in
BPD in the 2 groups despite reduction in need of MV in first 72 hours.43,44

A recent meta-analysis of SI in DR reported a significant reduction in need for MV
within the first 72 hours after birth in the SI group (RR [95% CI] 0.87 [0.77–0.97]; num-
ber needed to treat 10).45 Neonatal mortality and BPD were similar, however, between
the 2 groups. More concerning was the increase in patent ductus arteriosus treatment
in infants receiving SI (RR [95% CI] 1.27 [1.05–1.54], number needed to harm 10).45

The investigators speculated that early FRC establishment associated with reduction
of pulmonary vascular resistance might induce rapid development of left-to-right
shunting through the ductus.45 A recent Cochrane review,46 which was limited to in-
fants who received a 15-second pressure-controlled SI versus standard inflations, re-
ported no differences in mortality, intubation in the first 3 days of life, or BPD. In
addition, there are several factors that may considerably influence the effectiveness
of any SI intervention, including (1) skill of the clinical team, (2) interface by which an
SI is delivered,47 (3) an infant’s intrinsic respiratory effort,48 and (4) mask leak.48 This
suggests that an SI might not be the optimal approach in all apneic infants. These
data suggest that more studies are needed before SI can be routinely used in the
DR. Currently studies comparing SI to PPV alone are ongoing49 and their results might
help to inform the next cycle of the neonatal resuscitation guidelines in 2020. Until new
results become available, SI should be limited to clinical trials.

OXYGEN USE IN THE DELIVERY ROOM

In 2010, neonatal resuscitation guidelines recommended use of blended air and oxy-
gen to babies born at less than 32 weeks’ gestation, and that FIO2 should be guided by
pulse oximetry.50 These guidelines stated that resuscitation should be started with air
in infants who were at least 32 weeks of gestation.51 In 2015, the guidelines made a
strong recommendation to initiate stabilization of preterm infants less than 35 weeks
gestation with lower initial fraction of inspired oxygen (FIO2) (0.21–0.3) and not higher
FIO2 (>0.65).4 This approach is supported by a few small studies comparing different
oxygen concentrations during neonatal resuscitation at birth. Wang and colleagues52

reported that preterm infants ventilated in air required oxygen to achieve target oxy-
gen saturation as measured by pulse oxymetry (SpO2) and to overcome bradycardia.
Although ELBW infants resuscitated with an initial FIO2 of 0.3 compared with 0.9 had
reduced oxidative stress and risk of BPD.53 There was no difference in the overall
risk of death or other common preterm morbidities when resuscitation is initiated at
delivery with lower (�0.30) or higher (�0.6) FIO2 in infants less than or equal to
2816 weeks’ gestation.52–54 The opposing results for masked and unmasked trials
may represent a type I error, emphasizing the need for larger, well-designed studies.55
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A recent meta-analysis in 677 preterm infants less than or equal to 32 weeks’ gestation
showed no differences in morbidity, with a trend toward lower mortality in the lower
(0.21–0.3 FIO2) oxygen group compared with the higher (0.6–1.0 FIO2) oxygen group.56

These data support the current neonatal resuscitation recommendations to initiate
stabilization of preterm infants less than 35 weeks’ gestation with lower initial FIO2

(0.21–0.3) and not higher FIO2 (>0.65).
4

There is recent evidence, however, from several studies that initiating stabilization of
ELBW infants with lower initial FIO2 (0.21–0.3) might increase morbidities and mortality
in these infants. The Targeted Oxygenation in the Resuscitation of Premature Infants
and Their Developmental Outcome (TO2RPIDO) trial compared FIO2 of 1.0 versus 0.21
during DR resuscitation of preterm infants less than 32 weeks’ gestation targeting for
SpO2 65% to 95% up to 5 minutes and 85% to 95% until admission. The study end-
points were mortality and neurodevelopmental outcome at 2 years of corrected age;
however, the trail was closed prematurely due to slow enrollment. In 2015, Oei and
colleagues reported that mortality was 16.2% versus 6% in the 0.21 versus the 1.0
FIO2 group (P5 .013), but only in a subgroup of babies less than 29 weeks’ gestation.57

In 2006 the Canadian Neonatal Resuscitation Program recommended use of either
room air or an intermediate concentration of oxygen (eg, 0.3–0.4 FIO2) in preterm in-
fants and to adjust FIO2 according to SpO2 values. Rabi and colleagues58 compared
pre-epochs (use of 1.0 FIO2) and post-epochs (titration of FIO2) epochs on the effects
on neonatal outcomes. The adjusted odds ratio (AOR) for the primary outcome of se-
vere neurologic injury or death was higher in the lower oxygen group (AOR 1.36; 95%
CI, 1.11–1.66) than those resuscitated in 100% oxygen (AOR 1.33; 95%CI, 1.04–1.69).
These studies57,58 (published after the current neonatal resuscitation guidelines) sug-
gest that the current recommendations do not reflect the present state of uncertainty
regarding best initial FIO2 for ELBW infants and certainly not how to optimally titrate
FIO2.

55

Practical Aspects

Since the 2010 resuscitation guidelines recommendations, there has been a change in
practice in centers using 100% oxygen to initiate resuscitation. Overall, the number of
units starting at 100% oxygen decreased from 56.3% (36/64) to 6.3% (4/64) and the
rate of those using greater than 40% oxygen decreased from 76.6% (49/64) to 9.4%
(6/64).59 For the resuscitation and stabilization ELBW infants at birth, while waiting for
the results from larger, well-designed studies on the comparison of low versus high
oxygen concentrations, it seems appropriate to start with 21% to 30% oxygen.

MONITORING DURING NEONATAL TRANSITION

In the NICU, preterm infants are continuously monitored using an array of devices to
assess arterial blood gases, heart rate (HR), oxygen saturation, end-tidal carbon diox-
ide, and respiratory functions to guide effectiveness of respiratory support. Although
these methods are not commonly applied in the DR, there is an increasing interest in
monitoring physiologic changes during neonatal transition.60–64

Heart Rate and Oxygen Saturation

The oxygen saturation and HR reflect adequate transition of newborn infants in the
DR.4 The pulse oximeter should be placed on the right hand or wrist of the infant to
obtain both oxygen saturation and HR measurement.4 Fetal life occurs in a hypoxic
environment and it is well established that preterm preductal oxygen saturation rea-
ches 80% to 90% between 5 minutes and 10 minutes of life.65 Recently, oxygen
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percentiles have been established and are recommended to be used when ELBWs are
supported in the DR.65,66 The targeted oxygen saturation reference ranges for first
10 minutes of neonatal life are encouraged to be incorporated in neonatal resuscita-
tion to titrate the inspired oxygen in the DR. During neonatal resuscitation, an increase
in HR is an indicator for effective ventilation.4,67 The neonatal HR dictates interventions
in the DR and quick and reliable detection of HR improves the timeliness of critical in-
terventions.66 Traditional assessment techniques (eg, palpation of the umbilical cord
or auscultation) have been demonstrated to be inaccurate.68–71 Furthermore, newborn
HR increases more slowly in (1) preterm vs term infants,72 (2) after cesarean vs vaginal
birth,72 and (3) in newborns after maternal analgesia administration and DCC.65,73

Recently there has been a trend to either use pulse oximetry or ECG to continuously
display HR during resuscitation.74,75 Potential limitations of ECG includes difficult ECG
lead placement on the wet skin of ELBW infants, epidermal loss at the site of leads
placement, and overestimation of HR in the setting of potential pulseless electric ac-
tivity, thus delaying needed resuscitation efforts.

Respiratory Function Monitor

Effective mask PPV, however, can be compromised by mask leak, airway obstruc-
tion,76,77 poor technique,78,79 placing a hat, or drying the infant.78 In addition, current
neonatal resuscitation guidelines recommend a set peak inflation pressure with the
assumption this delivers an adequate VT; however, the VT has rarely been
measured.80,81 Observational studies in the DR reported a delivered VT between
0 mL/kg and 30 mL/kg when a set pressure was used.80,81 This is concerning because
animal studies have reported that only 6 inflations with a VT of 35 mL/kg damage the
lungs and alter the response to surfactant.82

Using a respiratory function monitor (RFM) can provide real-time assessment of
airway pressures, gas flow, VT, and leak83 during neonatal training84 and neonatal
resuscitation.48,83,85–88 Using an RFM in addition to clinical assessment compared
with clinical assessment alone has the potential to lower the rate of excessive VT de-
livery and reduce DR intubation.85 Caregivers using an RFM during mask PPV, how-
ever, need to be familiar with their device and the waveforms displayed.83 Further
research is needed to determine whether the routine use of an RFM during neonatal
training or neonatal resuscitation improves clinical outcomes.

Exhaled Carbon Dioxide

SpO2 and HR in the DR guide oxygen delivery and respiratory support; these are
further supplemented by using an RFM to measure gas flows and VT. These parame-
ters provide little information, however, on ventilation efficiency and the degree of gas
exchange and provide limited feedback to guide clinical care when cardiorespiratory
indicators fail to improve. CO2 is produced in tissues as a byproduct of oxidative meta-
bolism, enters the blood, and is eliminated from the body by diffusion across the alve-
olar epithelium before it is exhaled in the expired gas. Because CO2 can only be
present in expired gas if gas exchange has commenced, expired CO2 (ECO2) levels
may indicate the degree and success of lung aeration and gas exchange.89 Currently,
colorimetric CO2 detectors are commonly used in the DR to assess mask ventilation
and to confirm correct endotracheal tube placement.76,88,90–92 In addition, several
observational studies have described the value of using ECO2 to assess lung aeration
and guide respiratory support in the DR.64,93–95 Recent small trials using ECO2 to
guide respiratory support at birth reported no difference in admission blood gases96

but a trend to lower rates of BPD.45
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Near-infrared Spectroscopy

Near-infrared spectroscopy (NIRS) allows noninvasive continuous real-time measure-
ment of the regional tissue oxygen saturation.97 NIRS can also be used in conjunction
with arterial pulse oximetry to calculate the fractional tissue oxygen extraction: the ra-
tio of cerebral oxygen consumption to cerebral oxygen delivery. Pichler and col-
leagues98 found spontaneously breathing premature infants (mean gestation
32 weeks) who received DCC had a lower initial (first 3 minutes of life) cerebral satu-
ration whereas Baenziger and colleagues99 found infants who received DCC had
higher cerebral oxygenation levels at 4 hours and 24 hours of life compared with
ICC. Similarly, infants who received UCM compared with DCC had a trend toward
higher cerebral saturations between 3 hours and 24 hours after birth.12 Low cerebral
tissue oxygen saturation, as measured by NIRS in the first few days of life, has been
shown associated with adverse neurologic outcome and IVH.100 To prevent brain
injury, the brain must have adequate tissue oxygen delivery.

Practical Aspects

Currently, SpO2 monitoring should be used to titrate oxygen delivery during initial sta-
bilization at birth.4 Furthermore, ECG is the most accurate technique to assess HR at
birth.75 There is some evidence that during PPV an RFM can improve mask ventilation
performance,85 and ECO2 can assess lung aeration.89,93,96 In addition, using NIRS has
the potential to monitor cerebral oxygen delivery.101 Further evidence is needed
before these techniques can be translated into routine care in the DR.

SURFACTANT DEFICIENCY

ELBW infants are born with structurally immature and surfactant-deficient lungs,
which can be translated in difficult to maintain FRC and upper airway patency. Early
administration of surfactant treatment, that is, within 2 hours after birth, has been
shown to significantly decrease rates of death, air leak, and BPD, but comparing early
surfactant in the DR against CPAP at birth, early surfactant does not show any benefit
in the outcome with death or BPD.30 The use of CPAP at birth can counteract the pre-
term RDS with reduced need of surfactant, ventilator dependence and BPD.29,102

Alternative surfactant administration methods (eg, intubation, surfactant, and extu-
bation [INSURE] andminimal invasive surfactant therapy [MIST]) have been advocated
to avoid MV after surfactant administration.103–105 Verder and colleagues106 first
described INSURE in 1992 and reported that the need for subsequent MV after
INSURE was significantly reduced to 43% compared with 85% in infants treated
with CPAP alone (P 5 .003). A meta-analysis (n 5 1551 preterm infant) comparing
INSURE 1 CPAP vs CPAP alone, however, did not show any significant difference
in either death or BPD. Side effects of INSURE include (1) CPAP failure rates of
10% to 50%, (2) sedation and analgesia, and (3) need for intubation and MV/PPV until
extubation.
More recently, other strategies to administer surfactant by avoiding intubation and

MV and/or analgesia/sedation have been described.103–105 The Kribs technique103

uses a thin feeding tube placed into the trachea using a Magill forceps during direct
laryngoscopy. The procedure is performed without pharmacologic sedation and
well tolerated.103,107,108 Overall, the need for MV was reduced; however, no differ-
ences in BPD or death were observed.103 The MIST technique uses a narrow-bore
tracheal catheter during direct laryngoscopy without analgesia while receiving
CPAP.104,105 Observational studies using MIST reported a reduction for the need of
MV in 25 weeks’ to 28 weeks’ gestation compared with controls (32% vs 68%; OR
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[95% CI] 0.21, 0.083–0.55), with a similar trend at 29 weeks’ gestation to 32 weeks’
gestation (22% vs 45%; OR [95% CI] 0.34, 0.11–1.1).104 Although MIST is feasible
and potentially effective, further investigation in clinical trials are needed, particularly
in the periviable period.

Practical Aspects

Currently, surfactant administration could be performed either after routine intubation
or using the INSURE technique. MIST techniques are currently being investigated in
multicenter randomized controlled trials and should only be used in the research
environment.

EARLY USE OF CAFFEINE

Methylxanthines as treatment of apnea of prematurity have been demonstrated to
reduce rates of BPD,109 and caffeine improves survival without neurologic impairment
or developmental delay at 18 months to 21 months of age.110 Furthermore, early (pro-
phylactic) use of caffeine is associated with less BPD and patent ductus arteriosus.
Katheria and colleagues,111 in a small feasibility study, randomized preterm infants
to receive caffeine in the first 2 hours or 12 hours after birth. Administration of earlier
caffeine administration was associated with improved blood pressure and superior
vena cava flow without any differences in need for intubation or vasopressors.
Currently, there is insufficient evidence to suggest routine caffeine administration in
the DR, and larger studies are needed to determine the benefits of prophylactic
caffeine.

Practical Aspects

Caffeine should be given to ELBW infants to reduce apnea of prematurity and BPD.109

The timing of caffeine administration (DR or NICU), however, has not being
determined.

SUMMARY

Extremely preterm infants face major challenges at birth due to their immature phys-
iology leading to complicated transition. Multifactorial morbidities and lack of robust
long-term neurodevelopmental outcome remain the main barriers in establishing clear
well-defined guidelines for neonatal resuscitation for this vulnerable population.
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